Asset-level risk and return in real estate investments

Jacob S. Sagi

Kenan-Flagler Business School
University of North Carolina at Chapel Hill
Individual real estate assets

- Highly illiquid
 - Trade infrequently
 - Costly to trade
Individual real estate assets

- Highly illiquid
 - Trade infrequently
 - Costly to trade
- Large market
 - Investment market: ~ $3T as of 2010 (Geltner et al., 2013)
Individual real estate assets

- Highly illiquid
 - Trade infrequently
 - Costly to trade
- Large market
 - Investment market: ~ $3T as of 2010 (Geltner et al., 2013)
- Idiosyncratic risk matters
 - A third of investment-grade RE held privately (Geltner et al., 2013)
 - RE investments underwritten at asset-level
 - Secured debt
 - CMBS
What do we know?

- CMBS (Downing et al., 2008)
 - Back out implied volatility from loans
 - 20%-24% idiosyncratic vol
What do we know?

- CMBS (Downing et al., 2008)
 - Back out implied volatility from loans
 - 20%-24% idiosyncratic vol
- Peng (2014)
 - Same data set as this paper
 - Examines systematic exposure of property-level returns
What do we know?

- **CMBS (Downing et al., 2008)**
 - Back out implied volatility from loans
 - 20%-24% idiosyncratic vol
- **Peng (2014)**
 - Same data set as this paper
 - Examines *systematic* exposure of property-level returns
- **Plazzi, Torous and Valkanov (2008)**
 - Geographic-level data from Global Real Analytics
 - 4%-7% dispersion in means
 - Much of the property-specific risk is diversified
What do we know?

- CMBS (Downing et al., 2008)
 - Back out implied volatility from loans
 - 20%-24% idiosyncratic vol
- Peng (2014)
 - Same data set as this paper
 - Examines *systematic* exposure of property-level returns
- Plazzi, Torous and Valkanov (2008)
 - Geographic-level data from Global Real Analytics
 - 4%-7% dispersion in means
 - Much of the property-specific risk is diversified

All assume random walk hypothesis.
Idiosyncratic h.p.l.p.a. mean and variance

Estimate a_τ and σ^2_τ in

$$r^\text{App,e}_{i,\tau} = a_\tau + \beta r^e_{m,\tau} + \sigma_\tau \varepsilon_i.$$
Results: Holding period residual return variance

<table>
<thead>
<tr>
<th>Holding Period (years)</th>
<th>Variance of Market-adjusted Log-Price Appreciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coeff</th>
<th>T-stat</th>
<th>R²</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>0.0108</td>
<td>15.4</td>
<td>0.994</td>
</tr>
<tr>
<td>Const</td>
<td>0.0413</td>
<td>14.1</td>
<td></td>
</tr>
</tbody>
</table>

Sagi, Jacob S. Asset-level risk and return in real estate investments
Results: Holding period idiosyncratic return mean

<table>
<thead>
<tr>
<th>Holding Period (years)</th>
<th>Mean Market-adjusted Log-Price Appreciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.6</td>
</tr>
<tr>
<td>2</td>
<td>-1.2</td>
</tr>
<tr>
<td>3</td>
<td>-0.8</td>
</tr>
<tr>
<td>4</td>
<td>-0.4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>

Mean Market-adjusted Log-Price Appreciation

<table>
<thead>
<tr>
<th></th>
<th>coeff</th>
<th>t-stat</th>
<th>R2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>-0.0871</td>
<td>-24.7</td>
<td>0.990</td>
<td>14</td>
</tr>
<tr>
<td>Const</td>
<td>0.0757</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extrapolated Sharpe Ratio for zero holding period:
$$\frac{0.076}{\sqrt{0.041}} \approx 0.37.$$
The puzzle

- Slopes of graphs are consistent with constant drift & volatility of random walk process.a

- Intercepts of graphs imply infinite drift & volatility as holding period $\to 0$.

aNot with CMBS implied property volatility in (Downing et al., 2008).
The puzzle

- Slopes of graphs are consistent with constant drift & volatility of random walk process.a

- Intercepts of graphs imply infinite drift & volatility as holding period $\to 0$.

aNot with CMBS implied property volatility in (Downing et al., 2008).

Contribution: Possible explanations

- Results are spurious
 - Vintage effects
Contribution: Possible explanations

- Results are spurious
 - Vintage effects
 - Random coefficients
Contribution: Possible explanations

- Results are spurious
 - Vintage effects \(\times \)
 - Random coefficients \(\times \)
 - Selection bias 1: Safer assets held longer

Sagi, Jacob S. Asset-level risk and return in real estate investments
Contribution: Possible explanations

- Results are spurious
 - Vintage effects
 - Random coefficients
 - Selection bias 1: Safer assets held longer
 - Selection bias 2: Optimal disposition
Contribution: Possible explanations

- Results are spurious
 - Vintage effects \(\times\)
 - Random coefficients \(\times\)
 - Selection bias 1: Safer assets held longer \(\times\)
 - Selection bias 2: Optimal disposition \(\times\)
Contribution: Possible explanations

- Results are spurious
 - Vintage effects
 - Random coefficients
 - Selection bias 1: Safer assets held longer
 - Selection bias 2: Optimal disposition
- Results arise from illiquidity of the underlying
Contribution: Possible explanations

- Results are spurious
 - Vintage effects
 - Random coefficients
 - Selection bias 1: Safer assets held longer
 - Selection bias 2: Optimal disposition

- Results arise from illiquidity of the underlying
 - Equilibrium search model with random matching and bargaining

Sagi, Jacob S. Asset-level risk and return in real estate investments
Contribution: Possible explanations

- Results are spurious
 - Vintage effects
 - Random coefficients
 - Selection bias 1: Safer assets held longer
 - Selection bias 2: Optimal disposition

- Results arise from illiquidity of the underlying
 - Equilibrium search model with random matching and bargaining
 - Gains from trade come from persistent but heterogeneous private valuations of property income streams
Contribution: Possible explanations

- Results are spurious
 - Vintage effects
 - Random coefficients
 - Selection bias 1: Safer assets held longer
 - Selection bias 2: Optimal disposition
- Results arise from illiquidity of the underlying
 - Equilibrium search model with random matching and bargaining
 - Gains from trade come from persistent but heterogeneous private valuations of property income streams
 - Qualitatively reproduce results
Contribution: Possible explanations

- Results are spurious
 - Vintage effects
 - Random coefficients
 - Selection bias 1: Safer assets held longer
 - Selection bias 2: Optimal disposition

- Results arise from illiquidity of the underlying
 - Equilibrium search model with random matching and bargaining
 - Gains from trade come from persistent but heterogeneous private valuations of property income streams
 - Qualitatively reproduce results
 - Can be calibrated to the data
An explanation?

- Can’t arbitrage off zero holding period extrapolated Sharpe Ratio (≈ 0.37).
 - Real estate is too illiquid to hold for very short periods.
An explanation?

- Can’t arbitrage off zero holding period extrapolated Sharpe Ratio (≈ 0.37).
 - Real estate is too illiquid to hold for very short periods
- Can illiquidity explain the empirical finding?

- Large number of infinitely-lived investors and income-producing properties
An equilibrium random search and bargaining model

- Large number of infinitely-lived investors and income-producing properties
- Property income is d_t
An equilibrium random search and bargaining model

- Large number of infinitely-lived investors and income-producing properties
- Property income is d_t
- Investor i discounts next period’s payoffs with rate $r_{i,t} \in A$
 - A is a finite set of discount rate “types”
 - $r_{i,t}$ is Markov process with transition matrix $\Pi^T_{aa'}$ representing probability of going from type a to a'
 - $r_{i,t}$ independent across investors and not correlated with income shocks
An equilibrium random search and bargaining model

Assumptions:

- Owners receive one bid per period from investor drawn from the unconditional distribution of types, π^U.
- Investors can own more than one property
An equilibrium random search and bargaining model

Assumptions:

- Owners receive one bid per period from investor drawn from the unconditional distribution of types, π^U.
 - Investors can own more than one property
- Random relative bargaining power (gains from trade are allocated randomly)
An equilibrium random search and bargaining model

Assumptions:

- Owners receive one bid per period from investor drawn from the unconditional distribution of types, π^U.
 - Investors can own more than one property
- Random relative bargaining power (gains from trade are allocated randomly)
- Seller pays transaction cost of c_t
Property owned by type a

Owner receives offer from type a'

Owner's type transitions

t

Offer rejected or accepted & ownership is transferred

$t+1$
Private value of ownership

\[p_t(r_{i,t}) = \frac{1}{1 + r_{i,t}} E \left[\tilde{d}_{t+1} + p_{t+1}(\tilde{r}_{i,t+1}) \right. \]
\[+ \tilde{\lambda} \left\{ p_{t+1}(\tilde{r}^{'}) - p_{t+1}(\tilde{r}_{i,t+1}) - \tilde{c}_{t+1} \right\}^+ \]...

- \(\{x\}^+ \equiv \max\{0, x\} \)
- \(\tilde{r}_{i,t+1} \) and \(\tilde{r}^{'} \) are seller's and buyer's random discount rates at date \(t + 1 \) (independent)
- \(\tilde{\lambda} \) is random allocation of gains from trade (relative bargaining power) — independent of other RVs
Definitions

Equilibrium

An equilibrium is a positive and finite random variable $p_t(r_a)$ that solves (1) for every $a \in \mathcal{A}$.
Definitions

<table>
<thead>
<tr>
<th>Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>An equilibrium is a positive and finite random variable $p_t(r_a)$ that solves (1) for every $a \in \mathcal{A}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equilibrium steady state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A steady state is achieved once the distribution of ownership across properties is not expected to change.</td>
</tr>
</tbody>
</table>
Useful detour: The frictionless ideal

If $c_t = 0$ and number of bids can be arbitrarily large,

$$p_t(r_{i,t}) = \frac{1}{1 + r_{i,t}} E \left[\tilde{d}_{t+1} + p_{t+1}(\tilde{r}_{i,t+1}) \right] + \max \left\{ 0, \tilde{\lambda}'(p_{t+1}(\tilde{r}')) - p_{t+1}(\tilde{r}_{i,t+1}), \tilde{\lambda}''(p_{t+1}(\tilde{r}'') - p_{t+1}(\tilde{r}_{i,t+1}), \tilde{\lambda}'''(p_{t+1}(\tilde{r}''') - p_{t+1}(\tilde{r}_{i,t+1}), \ldots \right\}^+.$$
If $c_t = 0$ and number of bids can be arbitrarily large,

$$p_t(r_{i,t}) = \frac{1}{1 + r_{i,t}} E\left[\tilde{d}_{t+1} + p_{t+1}(\tilde{r}_{i,t+1})
ight]$$

$$+ \max \left\{ 0, \tilde{\lambda}'(p_{t+1}(\tilde{r}') - p_{t+1}(\tilde{r}_{i,t+1})), \tilde{\lambda}''(p_{t+1}(\tilde{r}'') - p_{t+1}(\tilde{r}_{i,t+1})), \tilde{\lambda}'''(p_{t+1}(\tilde{r}''') - p_{t+1}(\tilde{r}_{i,t+1})), \ldots \right\}^+ \right].$$

Bidder types are dense in support of $\tilde{\lambda}$ and $\tilde{r} \Rightarrow$ winning bid:
Useful detour: The frictionless ideal

If $c_t = 0$ and number of bids can be arbitrarily large,

$$p_t(r_{i,t}) = \frac{1}{1 + r_{i,t}} E \left[\tilde{d}_{t+1} + p_{t+1}(\tilde{r}_{i,t+1}) \right]$$

$$+ \max \left\{ 0, \tilde{\lambda}'(p_{t+1}(\tilde{r}') - p_{t+1}(\tilde{r}_{i,t+1})), \tilde{\lambda}''(p_{t+1}(\tilde{r}'') - p_{t+1}(\tilde{r}_{i,t+1})), \tilde{\lambda}'''(p_{t+1}(\tilde{r}''') - p_{t+1}(\tilde{r}_{i,t+1})), \ldots \right\}^+ \right].$$

Bidder types are dense in support of $\tilde{\lambda}$ and $\tilde{r} \Rightarrow$ winning bid:

- least bargaining power (highest λ)
Useful detour: The frictionless ideal

If $c_t = 0$ and number of bids can be arbitrarily large,

$$p_t(r_{i,t}) = \frac{1}{1 + r_{i,t}} E \left[\tilde{d}_{t+1} + p_{t+1}(\tilde{r}_{i,t+1}) + \max \left\{ 0, \tilde{\lambda}'(p_{t+1}(\tilde{r}')) - p_{t+1}(\tilde{r}_{i,t+1}), \tilde{\lambda}''(p_{t+1}(\tilde{r}'') - p_{t+1}(\tilde{r}_{i,t+1}), \tilde{\lambda}'''(p_{t+1}(\tilde{r}''') - p_{t+1}(\tilde{r}_{i,t+1}), \ldots \right\}^+ \right].$$

Bidder types are dense in support of $\tilde{\lambda}$ and \tilde{r} ⇒ winning bid:

- least bargaining power (highest λ)
- highest valuation
Useful detour: The frictionless ideal

If $c_t = 0$ and number of bids can be arbitrarily large,

$$p_t(r_{i,t}) = \frac{1}{1 + r_{i,t}} E \left[\tilde{d}_{t+1} + p_{t+1}(\tilde{r}_{i,t+1}) \right. + \max \left\{ 0, \tilde{\lambda}'(p_{t+1}(\tilde{r}') - p_{t+1}(\tilde{r}_{i,t+1})), \right.$$

$$\tilde{\lambda}''(p_{t+1}(\tilde{r}'') - p_{t+1}(\tilde{r}_{i,t+1})), \tilde{\lambda}'''(p_{t+1}(\tilde{r}''') - p_{t+1}(\tilde{r}_{i,t+1})), \ldots \left\}^+ \right].$$

Bidder types are dense in support of $\tilde{\lambda}$ and $\tilde{r} \Rightarrow$ winning bid:

- least bargaining power (highest λ)
- highest valuation

Steady state owners will be highest valuation types and

$$p_t = \frac{E[\tilde{d}_{t+1} + \tilde{p}_{t+1}]}{1 + r}, \text{ where } r \text{ is smallest rate.}$$
Random walk income model

- $d_{t+1} = d_t e^{\mu - \frac{\sigma^2}{2}} + \sigma \tilde{\epsilon}_{t+1}$
- $c_t = cd_t$
Random walk income model

- $d_{t+1} = d_t e^{\mu - \frac{\sigma^2}{2}} + \sigma \tilde{\epsilon}_{t+1}$
- $c_t = c d_t$

Conjecture equilibrium where

$$p_t(r_a) = d_t Q_a.$$
Random walk income model

- \(d_{t+1} = d_t e^{\mu - \frac{\sigma^2}{2}} + \sigma \tilde{\epsilon}_{t+1} \)
- \(c_t = cd_t \)

Conjecture equilibrium where

\[p_t(r_a) = d_t Q_a. \]

Then \(Q_a \) solves linear set of equations:

\[
\forall a \in \mathcal{A}, \quad (1 + r_a)e^{-\mu}Q_a = (1 + \sum_{a' \in \mathcal{A}} \Pi_{a a'}^T Q_{a'}) + \bar{\lambda} \sum_{a', b \in \mathcal{A}} \Pi_{a a'}^T \pi_b \left\{ Q_b - Q_{a'} - c \right\}^+.
\]
Transaction prices

Transaction can only take place if $Q_b - Q_a \geq c$

- Q_b is buyer’s valuation
- Q_a is seller’s valuation
Transaction prices

Transaction can only take place if $Q_b - Q_a \geq c$

- Q_b is buyer’s valuation
- Q_a is seller’s valuation

Observed (net) transaction prices

$$P_{t,ab} = d_t \left(Q_a + \tilde{\lambda}(Q_b - Q_a - c) \right), \quad \text{s.t.} \quad Q_b - Q_a' \geq c$$
Holding period returns

- At date t, property is bought in the steady state by type $Q_{i,t}$ from type O
Holding period returns

- At date t, property is bought in the steady state by type $Q_{i,t}$ from type O
- New owner receives offers for $\tau - 1$ periods but does not accept
Holding period returns

- At date t, property is bought in the steady state by type $Q_{i,t}$ from type O
- New owner receives offers for $\tau - 1$ periods but does not accept
- At date τ, the owner (now type $Q_{i,t+\tau}$) accepts offer from type S
Holding period returns

- At date t, property is bought in the steady state by type $Q_{i,t}$ from type O
- New owner receives offers for $\tau - 1$ periods but does not accept
- At date τ, the owner (now type $Q_{i,t+\tau}$) accepts offer from type S

Holding period price appreciation returns

$$\tilde{R}_{i,t,\tau} = \frac{Q_{i,t+\tau} + \tilde{\lambda}'(\tilde{Q}_S - Q_{i,t+\tau} - c)}{\tilde{Q}_O + c + \tilde{\lambda}(Q_{i,t} - \tilde{Q}_O - c)} e^{(\mu - \frac{\sigma^2}{2})\tau + \sigma \sqrt{\tau}\tilde{n}},$$

\tilde{n} is standard normal, $\tilde{\lambda}$ and $\tilde{\lambda}'$ are iid (note denominator).
Holding period idiosyncratic log returns

Let r_m be mean market return (assume normal) and σ_I be property idiosyncratic vol. Assume property $\beta_i = 1$.
Holding period idiosyncratic log returns

Let \(r_m \) be mean market return (assume normal) and \(\sigma_I \) be property idiosyncratic vol. Assume property \(\beta_i = 1 \).

\[
\ln \tilde{R}_{i,t} = \ln \left(Q_{i,t} + \tilde{\lambda}'(\tilde{Q}_s - Q_{i,t} - c) \right)
\]

\[
- \ln \left(\tilde{Q}_O + c + \tilde{\lambda}(Q_{i,t} - \tilde{Q}_O - c) \right)
\]

\[
+ \sigma_I \sqrt{\tau} \tilde{n} + (\mu - \frac{\sigma_I^2}{2} - r_m)\tau.
\]

conditional on observing the purchase and sale....
Holding period idiosyncratic log returns

Let r_m be mean market return (assume normal) and σ_I be property idiosyncratic vol. Assume property $\beta_i = 1$.

$$\ln \tilde{R}_{i,t,\tau} = \ln \left(Q_{i,t+\tau} + \tilde{\lambda}'(\tilde{Q}_S - Q_{i,t+\tau} - c) \right)$$

Selling shock

$$- \ln \left(\tilde{Q}_O + c + \tilde{\lambda}(Q_{i,t} - \tilde{Q}_O - c) \right)$$

Purchasing shock

$$+ \sigma_I \sqrt{\tau} \tilde{n} + (\mu - \frac{\sigma_I^2}{2} - r_m)\tau.$$

Income shock

conditional on observing the purchase and sale....

- Selling and purchasing shocks are idiosyncratic
Holding period log returns: IID vs. Persistent Types

- Type transition cannot be completely random
Holding period log returns: IID vs. Persistent Types

- Type transition cannot be completely random
- What about persistent types?
Holding period log returns: IID vs. Persistent Types

- Type transition cannot be completely random
- What about persistent types?
 - New buyer will be “high valuation” type
Holding period log returns: IID vs. Persistent Types

- Type transition cannot be completely random
- What about persistent types?
 - New buyer will be “high valuation” type
 - Unlikely to change types the following period
Type transition cannot be completely random

What about persistent types?
- New buyer will be “high valuation” type
- Unlikely to change types the following period
- Likely to sell only if bid is higher than private value
Type transition cannot be completely random

What about persistent types?

- New buyer will be “high valuation” type
- Unlikely to change types the following period
- Likely to sell only if bid is higher than private value
 - And therefore greater than last period’s purchase price
Holding period log returns: IID vs. Persistent Types

- Type transition cannot be completely random
- What about persistent types?
 - New buyer will be “high valuation” type
 - Unlikely to change types the following period
 - Likely to sell only if bid is higher than private value
 - And therefore greater than last period’s purchase price
 - Short holding periods correspond to “better than purchase price offers” and positive expected returns
A simple calibration

- Three states: $r_1 < r_2 < r_3$
A simple calibration

- Three states: \(r_1 < r_2 < r_3 \)
- Set \(x, y > 0 \) and \(x + y < 1 \). Let

\[
\Pi_{aa'}^T = \begin{pmatrix}
1 - x - y & x & y \\
x & 1 - 2x & x \\
y & x & 1 - x - y
\end{pmatrix}
\]
A simple calibration

- Three states: $r_1 < r_2 < r_3$
- Set $x, y > 0$ and $x + y < 1$. Let

$$\Pi^T_{a a'} = \begin{pmatrix} 1 - x - y & x & y \\ x & 1 - 2x & x \\ y & x & 1 - x - y \end{pmatrix}$$

- $$\pi^U = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})^T$$
A simple calibration

- Three states: $r_1 < r_2 < r_3$
- Set $x, y > 0$ and $x + y < 1$. Let

$$\pi^T_{aa'} = \begin{pmatrix}
1 - x - y & x & y \\
x & 1 - 2x & x \\
y & x & 1 - x - y
\end{pmatrix}$$

$$\pi^U = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^T$$

- Also determines the distribution of \tilde{Q}_S in $\ln \tilde{R}_{i,t,\tau}$.

Sagi, Jacob S. | Asset-level risk and return in real estate investments
A simple calibration

- Three states: $r_1 < r_2 < r_3$
- Set $x, y > 0$ and $x + y < 1$. Let

$$
\Pi_{aa'}^T = \begin{pmatrix}
1 - x - y & x & y \\
x & 1 - 2x & x \\
y & x & 1 - x - y
\end{pmatrix}
$$

- $\pi^U = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^T$
 - Also determines the distribution of \tilde{Q}_S in $\ln \tilde{R}_{i,t,\tau}$.
- Steady state distribution (\tilde{Q}_O in $\ln \tilde{R}_{i,t,\tau}$) given by

$$
\pi^O = \left(\frac{4x - y + 2}{6x^2 + 2x(6y + 5) + 5y + 2}, \frac{3(2x + y)}{6x^2 + 2x(6y + 5) + 5y + 2}, \frac{3\left(2x^2 + 4xy + y\right)}{6x^2 + 2x(6y + 5) + 5y + 2}\right)^T.
$$
Simple calibration, cont.

For the $\tau - 1$ “survival” probability, see paper. In calibration, set

For the $\tau - 1$ “survival” probability, see paper. In calibration, set
Simple calibration, cont.

For the $\tau - 1$ “survival” probability, see paper. In calibration, set

- Quarterly periods
- $r_1 = 0.0175$, $r_2 = 0.075$ and $r_3 = 0.125$ set to match time-independent variance in baseline calibration
- Idiosyncratic property volatility is set via $\sigma_i^2 = 0.0108$
- Property market return r_M is set to 10%
- c and income growth rate μ set to match median sales cost (0.0212) and mean annualized cap rates (0.0690)
- $x = y$ varied and equal 0.015 in baseline calibration
Calibration: Model comparison

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Estimated 2.5^{th} percentile</th>
<th>Estimated 97.5^{th} percentile</th>
<th>Calibrated Model</th>
<th>Calibrated Model 2</th>
<th>Calibrated Model 3</th>
<th>Calibrated Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = y$ (Qtrly)</td>
<td>NA</td>
<td>NA</td>
<td>0.013</td>
<td>0.030</td>
<td>0.050</td>
<td>0.100</td>
</tr>
<tr>
<td>c</td>
<td>NA</td>
<td>NA</td>
<td>1.228</td>
<td>1.228</td>
<td>1.228</td>
<td>1.228</td>
</tr>
<tr>
<td>μ (Qtrly)</td>
<td>-0.0022</td>
<td>0.0141</td>
<td>0.0082</td>
<td>0.0140</td>
<td>0.0193</td>
<td>0.0282</td>
</tr>
<tr>
<td>1yr Holding Per.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. Exp. Return</td>
<td>-0.038</td>
<td>0.024</td>
<td>-0.021</td>
<td>-0.043</td>
<td>-0.041</td>
<td>-0.017</td>
</tr>
<tr>
<td>Adj. Variance</td>
<td>0.048</td>
<td>0.060</td>
<td>0.051</td>
<td>0.044</td>
<td>0.036</td>
<td>0.024</td>
</tr>
<tr>
<td>Fraction Sold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 6.25 Years</td>
<td>0.491</td>
<td>0.508</td>
<td>0.497</td>
<td>0.790</td>
<td>0.922</td>
<td>0.991</td>
</tr>
<tr>
<td>Quarterly Turnover</td>
<td>NA</td>
<td>NA</td>
<td>0.030</td>
<td>0.065</td>
<td>0.100</td>
<td>0.168</td>
</tr>
<tr>
<td>Liquidity Premium</td>
<td>NA</td>
<td>NA</td>
<td>0.114</td>
<td>0.084</td>
<td>0.059</td>
<td>0.021</td>
</tr>
<tr>
<td>Fire Sale Discount</td>
<td>NA</td>
<td>NA</td>
<td>0.210</td>
<td>0.188</td>
<td>0.167</td>
<td>0.131</td>
</tr>
</tbody>
</table>
Calibration: Model comparison

Market-adjusted Expected Log-Price Appreciation

Holding Period (years)

- Actual
- x=0.013
- x=0.03
- x=0.05
- x=0.1

Sagi, Jacob S. Asset-level risk and return in real estate investments
Calibration: Fit of baseline model
Calibration: Fit of baseline model

Introduction
An empirical puzzle
Model
Empirical robustness
Conclusion

Sagi, Jacob S. Asset-level risk and return in real estate investments
Can we go home now?
Can we go home now?

No. Empirical results on holding period returns may be spurious

- Vintage effects
Can we go home now?

No. Empirical results on holding period returns may be spurious

- Vintage effects
- Random coefficients
Can we go home now?

No. Empirical results on holding period returns may be spurious

- Vintage effects
- Random coefficients
- Selection bias 1: Safer assets held longer
Can we go home now?

No. Empirical results on holding period returns may be spurious

- Vintage effects
- Random coefficients
- Selection bias 1: Safer assets held longer
- Selection bias 2: Optimal disposition
Vintage effects

Table 2: The histogram reports entries of properties into the database (i.e., “vintages”). The table reports the average vintage for various holding periods.

<table>
<thead>
<tr>
<th>Holding Period</th>
<th>Average Vintage</th>
<th>Number of Props</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2002</td>
<td>724</td>
</tr>
<tr>
<td>2</td>
<td>2001</td>
<td>770</td>
</tr>
<tr>
<td>3</td>
<td>2001</td>
<td>905</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>731</td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
<td>700</td>
</tr>
<tr>
<td>6</td>
<td>1997</td>
<td>593</td>
</tr>
<tr>
<td>7</td>
<td>1997</td>
<td>589</td>
</tr>
<tr>
<td>8</td>
<td>1994</td>
<td>477</td>
</tr>
<tr>
<td>9</td>
<td>1991</td>
<td>277</td>
</tr>
<tr>
<td>10</td>
<td>1990</td>
<td>236</td>
</tr>
<tr>
<td>11</td>
<td>1990</td>
<td>174</td>
</tr>
<tr>
<td>12</td>
<td>1990</td>
<td>125</td>
</tr>
<tr>
<td>13</td>
<td>1988</td>
<td>108</td>
</tr>
<tr>
<td>14</td>
<td>1987</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>1986</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>1983</td>
<td>34</td>
</tr>
</tbody>
</table>
Controlling for vintage effects: Strategy

- Randomly match property held between t and $t + k \times \tau$ with k properties respectively held between t and $t + \tau$, t and $t + 2\tau$, etc.
Controlling for vintage effects: Strategy

- Randomly match property held between t and $t + k \times \tau$ with k properties respectively held between t and $t + \tau$, t and $t + 2\tau$, etc.
 - Like a portfolio “roll-over” strategy
Controlling for vintage effects: Strategy

- Randomly match property held between t and $t + k \times \tau$ with k properties respectively held between t and $t + \tau$, t and $t + 2\tau$, etc.
 - Like a portfolio “roll-over” strategy
- Use a linear program to maximize number of such matches
Controlling for vintage effects: Strategy

- Randomly match property held between t and $t + k \times \tau$ with k properties respectively held between t and $t + \tau$, t and $t + 2\tau$, etc.
 - Like a portfolio “roll-over” strategy
- Use a linear program to maximize number of such matches
- Compare matched idiosyncratic mean and variance
Controlling for vintage effects: Strategy

- Randomly match property held between t and $t + k \times \tau$ with k properties respectively held between t and $t + \tau$, t and $t + 2\tau$, etc.
 - Like a portfolio “roll-over” strategy

- Use a linear program to maximize number of such matches

- Compare matched idiosyncratic mean and variance
 - Repeat 100 times and average stats to ensure all of data is utilized
Controlling for vintage effects: Strategy

- Randomly match property held between \(t \) and \(t + k \times \tau \) with \(k \) properties respectively held between \(t \) and \(t + \tau \), \(t \) and \(t + 2\tau \), etc.
 - Like a portfolio “roll-over” strategy
- Use a linear program to maximize number of such matches
- Compare matched idiosyncratic mean and variance
 - Repeat 100 times and average stats to ensure all of data is utilized
 - Standard error of estimate does not incorporate the repetition (conservative)
Vintage effects: Results

<table>
<thead>
<tr>
<th>k</th>
<th>τ</th>
<th>N</th>
<th>Avg Vintage</th>
<th>$(\text{Var Diff})/(k - 1)$</th>
<th>t-stat</th>
<th>$(\alpha \text{ Diff})/(k - 1)$</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>321</td>
<td>2002</td>
<td>0.056</td>
<td>5.37</td>
<td>-0.004</td>
<td>-0.09</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>315</td>
<td>2000</td>
<td>0.054</td>
<td>5.14</td>
<td>0.099</td>
<td>2.27</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>240</td>
<td>1999</td>
<td>0.056</td>
<td>4.30</td>
<td>0.068</td>
<td>1.27</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>237</td>
<td>1998</td>
<td>0.033</td>
<td>2.61</td>
<td>-0.023</td>
<td>-0.37</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>126</td>
<td>1997</td>
<td>0.029</td>
<td>2.59</td>
<td>0.095</td>
<td>2.08</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>140</td>
<td>1994</td>
<td>0.022</td>
<td>1.23</td>
<td>0.008</td>
<td>0.11</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>76</td>
<td>1993</td>
<td>0.033</td>
<td>1.24</td>
<td>-0.055</td>
<td>-0.58</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>58</td>
<td>1988</td>
<td>0.003</td>
<td>0.11</td>
<td>-0.183</td>
<td>-2.23</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>39</td>
<td>1988</td>
<td>0.015</td>
<td>1.06</td>
<td>0.020</td>
<td>0.43</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>31</td>
<td>1982</td>
<td>0.134</td>
<td>2.49</td>
<td>0.067</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Prob $\chi(\text{Var Diff}= 0)$: 4.7E-17

Prob $\chi(\alpha = 0)$: 0.0474

<table>
<thead>
<tr>
<th>Statistic</th>
<th>GLS Estimate</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var Diff</td>
<td>0.0404</td>
<td>0.0060</td>
</tr>
</tbody>
</table>
Random coefficients

\[
R_{it}^{App,e} = a_i - (\delta_i + \xi_i)\tau + \beta_i r_{it}^e + \sigma_i \sqrt{\tau} \varepsilon_i
\]

Heterogeneity of properties coefficients can lead to mis-measured estimates of idiosyncratic mean and variance as functions of \(\tau\).

- Estimate random effects model

\[
\tilde{R}_{it}^{App,e} = \alpha_0 \frac{1}{\sqrt{\tau}} + \alpha_1 \sqrt{\tau} + \beta \frac{r_{it}^e}{\sqrt{\tau}} + (\tilde{\varepsilon}_0 \frac{1}{\sqrt{\tau}} + \tilde{\varepsilon}_1 \sqrt{\tau} + \tilde{\varepsilon}_\beta \frac{r_{it}^e}{\sqrt{\tau}} + \sigma \tilde{\varepsilon})
\]
Random coefficients

\[r_{i}^{\text{App,e}} = a_{i} - (\delta_{i} + \xi_{i})\tau + \beta_{i}r_{m}^{e} + \sigma_{i}\sqrt{\tau}\varepsilon_{i} \]

Heterogeneity of properties coefficients can lead to mis-measured estimates of idiosyncratic mean and variance as functions of \(\tau \).

- Estimate random effects model

\[\tilde{r}_{\text{App,e}}^{\tau} = \alpha_{0} \frac{1}{\sqrt{\tau}} + \alpha_{1} \sqrt{\tau} + \beta \frac{r_{m}^{e}}{\sqrt{\tau}} + (\tilde{\varepsilon}_{0} \frac{1}{\sqrt{\tau}} + \tilde{\varepsilon}_{1} \sqrt{\tau} + \tilde{\varepsilon}_{\beta} \frac{r_{m}^{e}}{\sqrt{\tau}} + \sigma_{\tilde{\varepsilon}}) \]

- Want to back out \(\alpha_{0}, \alpha_{1}, \sigma_{0}^{2} \equiv \text{VAR[\tilde{\varepsilon}_{0}]} \) and \(\sigma^{2} \equiv \text{VAR[\tilde{\varepsilon}]} \)

- Four-pass regression (Hildreth and Houck, 1968; Swamy, 1970; Raj, Srivastava, and Ullah, 1980)
Random effects: Results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{r}_{\text{App},e}^{2}$</td>
<td>0.960</td>
<td>0.946</td>
</tr>
<tr>
<td>Adj $\hat{r}_{\text{App},e}^{2}$</td>
<td>0.946</td>
<td>0.946</td>
</tr>
<tr>
<td>β</td>
<td>0.960</td>
<td>0.946</td>
</tr>
<tr>
<td></td>
<td>(48.80)</td>
<td>(52.34)</td>
</tr>
<tr>
<td>α_1</td>
<td>-0.0875</td>
<td>-0.0864</td>
</tr>
<tr>
<td></td>
<td>(-63.62)</td>
<td>(-65.20)</td>
</tr>
<tr>
<td>α_0</td>
<td>0.0787</td>
<td>0.0748</td>
</tr>
<tr>
<td></td>
<td>(12.37)</td>
<td>(10.54)</td>
</tr>
<tr>
<td>Observations</td>
<td>6287</td>
<td>6287</td>
</tr>
</tbody>
</table>
Random effects: Results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{z}^2)</td>
<td>-0.0000736</td>
<td>-0.0000900</td>
<td>0.000242</td>
<td>0.000184</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.13)</td>
<td>(-0.16)</td>
<td>(1.01)</td>
<td>(0.79)</td>
<td></td>
</tr>
<tr>
<td>(2\sigma_1^2 \beta)</td>
<td>-0.00445</td>
<td>-0.00443</td>
<td>-0.00421</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.18)</td>
<td>(-1.18)</td>
<td>(-1.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma_0^2)</td>
<td>-0.0749</td>
<td>-0.0755</td>
<td>-0.0791</td>
<td>-0.118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.62)</td>
<td>(-1.63)</td>
<td>(-1.72)</td>
<td>(-3.89)</td>
<td></td>
</tr>
<tr>
<td>(\sigma_0^2)</td>
<td>0.0618</td>
<td>0.0616</td>
<td>0.0419</td>
<td>0.0421</td>
<td>0.0404</td>
</tr>
<tr>
<td></td>
<td>(2.05)</td>
<td>(2.04)</td>
<td>(10.17)</td>
<td>(10.21)</td>
<td>(14.56)</td>
</tr>
<tr>
<td>(2\sigma_0r)</td>
<td>-0.0290</td>
<td>-0.0289</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.66)</td>
<td>(-0.66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>0.0227</td>
<td>0.0228</td>
<td>0.0121</td>
<td>0.0122</td>
<td>0.0113</td>
</tr>
<tr>
<td></td>
<td>(1.38)</td>
<td>(1.38)</td>
<td>(4.81)</td>
<td>(4.85)</td>
<td>(11.72)</td>
</tr>
<tr>
<td>Collinearity</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>6287</td>
<td>6287</td>
<td>6287</td>
<td>6287</td>
<td>6287</td>
</tr>
</tbody>
</table>
Comparison with “naive” estimates

Not significantly different!
Endogeneity I: Risk-horizon preferences

Is it possible that investors have a preference for holding less volatile properties over longer periods?
Endogeneity I: Risk-horizon preferences

Is it possible that investors have a preference for holding less volatile properties over longer periods?

- If true, then property risk characteristics should predict propensity to sell
- Run Logit on panel
 - Dependent variable is one at quarter t if property is sold between $t + 1$ and $t + 4$
 - Independent variables are property-specific characteristics related to property risk profile
Logit: Sale versus risk characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff</th>
<th>t-stat</th>
<th>Marginal impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>SqFt</td>
<td>-1.08E-07</td>
<td>-4.47</td>
<td>-0.0034</td>
</tr>
<tr>
<td>JV</td>
<td>0.1060</td>
<td>5.43</td>
<td>0.0075</td>
</tr>
<tr>
<td>Age when acquired</td>
<td>0.0061</td>
<td>11.35</td>
<td>0.0119</td>
</tr>
<tr>
<td>Percent Leased</td>
<td>-0.5002</td>
<td>-8.75</td>
<td>-0.0085</td>
</tr>
<tr>
<td>Loan spread</td>
<td>2.2742</td>
<td>2.65</td>
<td>0.0005</td>
</tr>
<tr>
<td>Apartments</td>
<td>0.5007</td>
<td>20.49</td>
<td>0.0394</td>
</tr>
<tr>
<td>Industrial</td>
<td>-0.0430</td>
<td>-1.76</td>
<td>-0.0030</td>
</tr>
<tr>
<td>Office</td>
<td>0.1705</td>
<td>6.83</td>
<td>0.0123</td>
</tr>
<tr>
<td>East</td>
<td>0.0527</td>
<td>2.50</td>
<td>0.0037</td>
</tr>
<tr>
<td>Midwest</td>
<td>-0.0093</td>
<td>-0.39</td>
<td>-0.0006</td>
</tr>
<tr>
<td>South</td>
<td>0.1723</td>
<td>8.71</td>
<td>0.0124</td>
</tr>
<tr>
<td>Lagged return</td>
<td>-0.7748</td>
<td>-20.05</td>
<td>-0.0272</td>
</tr>
<tr>
<td>Idiosyncratic variance</td>
<td>-6.9031</td>
<td>-13.50</td>
<td>-0.0135</td>
</tr>
<tr>
<td>R^2_a</td>
<td>-1.7288</td>
<td>-38.69</td>
<td>-0.0950</td>
</tr>
<tr>
<td>β</td>
<td>0.0145</td>
<td>9.23</td>
<td>0.0043</td>
</tr>
<tr>
<td>Mgr Type</td>
<td>0.5835</td>
<td>20.09</td>
<td>0.0339</td>
</tr>
<tr>
<td>Const</td>
<td>-6.154</td>
<td>-14.61</td>
<td></td>
</tr>
</tbody>
</table>

Observations: 228,935
Endogeneity I: Mixed results for risk-horizon preferences

- Cumulative impact of unsupportive variables is greater
Endogeneity I: Mixed results for risk-horizon preferences

- Cumulative impact of unsupportive variables is greater
- IVar of appraisal-based returns is unsupportive of hypothesis
Endogeneity I: Mixed results for risk-horizon preferences

- Cumulative impact of unsupportive variables is greater
- IVar of appraisal-based returns is unsupportive of hypothesis
- Most impactful variables related to different kind of “risk”
Endogeneity I: Mixed results for risk-horizon preferences

- Cumulative impact of unsupportive variables is greater
- IVar of appraisal-based returns is unsupportive of hypothesis
- Most impactful variables related to different kind of “risk”
- Lagged returns important
 - Suggests different type of endogeneity might be at play
Endogeneity II: Performance-based selection bias

Logit provides evidence that underperforming properties are more likely to be sold
Endogeneity II: Performance-based selection bias

Logit provides evidence that underperforming properties are more likely to be sold

- Consistent with optimal disposition
 - Property α_t is not known at purchase
Endogeneity II: Performance-based selection bias

Logit provides evidence that underperforming properties are more likely to be sold

- Consistent with optimal disposition
 - Property α_t is not known at purchase
 - When purchased, $\alpha_0 > 0$
Endogeneity II: Performance-based selection bias

Logit provides evidence that underperforming properties are more likely to be sold

- Consistent with optimal disposition
 - Property α_t is not known at purchase
 - When purchased, $\alpha_0 > 0$
 - Manager learns about α_t from property’s market adjusted performance
Endogeneity II: Performance-based selection bias

Logit provides evidence that underperforming properties are more likely to be sold

- Consistent with optimal disposition
 - Property α_t is not known at purchase
 - When purchased, $\alpha_0 > 0$
 - Manager learns about α_t from property's market adjusted performance
 - If α_t is below some threshold, property is sold
Endogeneity II: Performance-based selection bias

Logit provides evidence that underperforming properties are more likely to be sold

- Consistent with optimal disposition
 - Property α_t is not known at purchase
 - When purchased, $\alpha_0 > 0$
 - Manager learns about α_t from property’s market adjusted performance
 - If α_t is below some threshold, property is sold

- Paths of properties with observed transactions is not representative and may understate true variance

- Model this to explore empirical predictions
Model of optimal disposition

\[dr_t = dr_t^O + dr_t^U \quad r^O \text{ observed }, r^U \text{ unobserved/unrelated} \]
Model of optimal disposition

\[dr_t = dr_t^O + dr_t^U \]
\[r^O \text{ observed, } r^U \text{ unobserved/unrelated} \]

\[dr_t^U = \sigma_Z dZ_t \]

\[dr_t^O = a_t dt + \sigma_W dW_t, \]

\[a_t = E_t[\alpha] \text{ is updated estimate of constant true } \alpha \]
Model of optimal disposition

\[dr_t = dr_t^O + dr_t^U \]
\[r^O \text{ observed, } r^U \text{ unobserved/unrelated} \]

\[dr_t^U = \sigma_Z dZ_t \]
\[dr_t^O = a_t dt + \sigma_W dW_t, \]

\[a_t = E_t[\alpha] \text{ is updated estimate of constant true } \alpha \]

\[da_t = \frac{\sigma_W}{\kappa + t} dW_t, \quad \kappa = \frac{\sigma_W^2}{\eta^2} \text{ from (Liptser and Shiryaev, 1978),} \]

where \(E_0[\alpha] = \alpha_0, \text{VAR}_0[\alpha] = \eta^2. \) Sell if property value falls below \(\alpha_L, \) set \(\hat{\alpha} \equiv \alpha_0 - \alpha_L. \)
Proposition

At the first passage time, \(\tau = \inf_t \{ a_t \leq \alpha_L \} \),

\[
 r_\tau = \sigma_Z Z_\tau - \kappa \hat{\alpha} + \alpha_L \tau.
\]

Thus \(E[r_\tau] = -\kappa \hat{\alpha} + \alpha_L \tau \) and \(\text{VAR}[r_\tau] = \sigma_Z^2 \tau \).
Result

Proposition

At the first passage time, \(\tau = \inf_t \{ a_t \leq \alpha_L \} \),

\[
 r_\tau = \sigma_Z Z_\tau - \kappa \hat{\alpha} + \alpha_L \tau.
\]

Thus \(E[r_\tau] = -\kappa \hat{\alpha} + \alpha_L \tau \) and \(\text{VAR}[r_\tau] = \sigma_Z^2 \tau \).

Mean negative. Variance still proportional to \(\tau \), unless

- there is substantial heterogeneity in \(\kappa \hat{\alpha} \)
Proposition

At the first passage time, \(\tau = \inf_t \{ a_t \leq \alpha_L \} \),

\[
\begin{align*}
\tau_r &= \sigma_Z Z_\tau - \kappa \hat{\alpha} + \alpha_L \tau. \\
\text{Thus } E[\tau_r] &= -\kappa \hat{\alpha} + \alpha_L \tau \text{ and } \text{VAR}[\tau_r] = \sigma_Z^2 \tau.
\end{align*}
\]

Mean negative. Variance still proportional to \(\tau \), unless

- there is substantial heterogeneity in \(\kappa \hat{\alpha} \)
- which should also show up in appraised idiosyncratic returns prior to sale
Appraised holding period returns two quarters prior to sale

\[S \text{quares} = (\text{quarterly appraisal-based time-series volatility}) \times \text{holding horizon}. \]
Disposition takes place at upper and lower thresholds: α_L and α_H
Another alternative

Disposition takes place at upper and lower thresholds: α_L and α_H

$$\text{VAR}[r_\tau] = \sigma^2 Z\tau + p(\tau)(1 - p(\tau))(\tau + \kappa)^2(\alpha_H - \alpha_L)^2,$$

$$E[r_\tau] = -\kappa \alpha_0 + (\kappa + \tau) (p(\tau)\alpha_L + (1 - p(\tau))\alpha_H),$$

- Should still see effect in appraised returns
- Predicts a bimodal distribution of holding period returns
Another alternative

Disposition takes place at upper and lower thresholds: α_L and α_H

\[
\text{VAR}[r_\tau] = \sigma^2 Z \tau + p(\tau)(1 - p(\tau))(\tau + \kappa)^2 (\alpha_H - \alpha_L)^2,
\]
\[
E[r_\tau] = -\kappa \alpha_0 + (\kappa + \tau) \left(p(\tau) \alpha_L + (1 - p(\tau)) \alpha_H \right),
\]

- Should still see effect in appraised returns
- Predicts a bimodal distribution of holding period returns
- Only one of 43 Hartigan and Hartigan (1985) “Dip” tests reject unimodality.
 - Each test sample fixes τ and vintage year
\[\tau \to 0 \text{ drift & vol diverge for CRE assets} \]

- Results are **not** spurious
 - Vintage effects
\[\tau \rightarrow 0 \text{ drift & vol diverge for CRE assets} \]

- Results are **not** spurious
 - Vintage effects \(\times \)
 - Random coefficients
Results are **not** spurious

- Vintage effects
 - Random coefficients
- Selection bias 1: Safer assets held longer
Results are **not** spurious

- Vintage effects ❌
- Random coefficients ❌
- Selection bias 1: Safer assets held longer ❌
- Selection bias 2: Optimal disposition
\(\tau \to 0 \) drift & vol diverge for CRE assets

- Results are **not** spurious
 - Vintage effects
 - Random coefficients
 - Selection bias 1: Safer assets held longer
 - Selection bias 2: Optimal disposition
$\tau \to 0$ drift & vol diverge for CRE assets

- Results are not spurious
 - Vintage effects \times
 - Random coefficients \times
 - Selection bias 1: Safer assets held longer \times
 - Selection bias 2: Optimal disposition \times

- Results arise from illiquidity of the underlying
$\tau \to 0$ drift & vol diverge for CRE assets

- Results are **not** spurious
 - Vintage effects
 - Random coefficients
 - Selection bias 1: Safer assets held longer
 - Selection bias 2: Optimal disposition

- Results arise from illiquidity of the underlying
 - Equilibrium search model with random matching and bargaining
\[\tau \to 0 \] drift & vol diverge for CRE assets

- Results are **not** spurious
 - Vintage effects \(\times \)
 - Random coefficients \(\times \)
 - Selection bias 1: Safer assets held longer \(\times \)
 - Selection bias 2: Optimal disposition \(\times \)
- Results arise from illiquidity of the underlying
 - Equilibrium search model with random matching and bargaining
 - Gains from trade come from persistent but heterogeneous private valuations of property income streams
$\tau \to 0$ drift & vol diverge for CRE assets

- Results are **not** spurious
 - Vintage effects \times
 - Random coefficients \times
 - Selection bias 1: Safer assets held longer \times
 - Selection bias 2: Optimal disposition \times

- Results arise from illiquidity of the underlying
 - Equilibrium search model with random matching and bargaining
 - Gains from trade come from persistent but heterogeneous private valuations of property income streams
 - Qualitatively reproduce results

Sagi, Jacob S. Asset-level risk and return in real estate investments
\[\tau \rightarrow 0 \text{ drift & vol diverge for CRE assets} \]

- Results are **not** spurious
 - Vintage effects \(\times \)
 - Random coefficients \(\times \)
 - Selection bias 1: Safer assets held longer \(\times \)
 - Selection bias 2: Optimal disposition \(\times \)

- Results arise from illiquidity of the underlying
 - Equilibrium search model with random matching and bargaining
 - Gains from trade come from persistent but heterogeneous private valuations of property income streams
 - Qualitatively reproduce results
 - Can be calibrated to the data
Implications

- Results arise from severe asset illiquidity
Implications

- Results arise from severe asset illiquidity
- Should be (and are) present in other illiquid asset classes
 - Residential RE (Case and Shiller, 1987) and (Goetzmann, 1993)
 - M & A
Implications

- Results arise from severe asset illiquidity
- Should be (and are) present in other illiquid asset classes
 - Residential RE (Case and Shiller, 1987) and (Goetzmann, 1993)
 - M & A
 - Large whole loans
Implications

- Results arise from severe asset illiquidity
- Should be (and are) present in other illiquid asset classes
 - Residential RE (Case and Shiller, 1987) and (Goetzmann, 1993)
 - M & A
 - Large whole loans
 - Private equity transactions
Implications

- Results arise from severe asset illiquidity
- Should be (and are) present in other illiquid asset classes
 - Residential RE (Case and Shiller, 1987) and (Goetzmann, 1993)
 - M & A
 - Large whole loans
 - Private equity transactions
 - Other real assets (ships, oil rigs, mines, etc....)
- Model can facilitate
 - Measurement of illiquidity
Implications

- Results arise from severe asset illiquidity
- Should be (and are) present in other illiquid asset classes
 - Residential RE (Case and Shiller, 1987) and (Goetzmann, 1993)
 - M & A
 - Large whole loans
 - Private equity transactions
 - Other real assets (ships, oil rigs, mines, etc....)
- Model can facilitate
 - Measurement of illiquidity
 - Pricing of assets
Implications

- Results arise from severe asset illiquidity
- Should be (and are) present in other illiquid asset classes
 - Residential RE (Case and Shiller, 1987) and (Goetzmann, 1993)
 - M & A
 - Large whole loans
 - Private equity transactions
 - Other real assets (ships, oil rigs, mines, etc....)
- Model can facilitate
 - Measurement of illiquidity
 - Pricing of assets
 - Pricing of derivatives (loans, structured financing, securitized assets)
Implications

- Results arise from severe asset illiquidity
- Should be (and are) present in other illiquid asset classes
 - Residential RE (Case and Shiller, 1987) and (Goetzmann, 1993)
 - M & A
 - Large whole loans
 - Private equity transactions
 - Other real assets (ships, oil rigs, mines, etc....)
- Model can facilitate
 - Measurement of illiquidity
 - Pricing of assets
 - Pricing of derivatives (loans, structured financing, securitized assets)
 - Separation between default and liquidity effects
Introduction

An empirical puzzle

Model

Empirical robustness

Conclusion

Sagi, Jacob S.

Asset-level risk and return in real estate investments