Planning Sustainable High-Density Communities

Asian cities are frequently associated with high density and congestion. Left to their own devices, dense cities that continue to grow rapidly often result in degraded environments and reduced levels of liveability.

New disruptive technologies and innovations are changing the nature of work and work arrangements; jobs are progressively moving away from the usual central business districts and closer to domestic and communal spaces of residential neighbourhoods. Shifting mobility options and telecommuting trend exert pressure on the existing amenities provision within residential neighbourhoods. In the face of land scarcity and population ageing, planning amenities in high-density residential neighbourhood faces issues and challenges more complex than ever before. Forward looking physical planning that considers the various dimensions of sustainability, adaptability and flexibility can help to mitigate the effects of high density and render the community more sustainable and resilient to unforeseen future changes.

This presentation introduces several key themes that are important in the planning and making of sustainable high-density communities and highlights a couple of projects that the speaker led in recent years. The first project involves planning a new city of extreme high-density housing about 150,000 people on a small reclaimed island half the size of Sentosa island. The second is a design research project for a community of some 8,000 households on a site of about 33 hectares that proposes the vision of a one-minute street-based township that addresses easy accessibility to social, commercial and healthcare amenities, elder-friendly living arrangements, evolving personal and shared mobility options and spaces catering to a transforming economy and new work practices. The design research also identifies strategies to render the high-density residential neighbourhood flexible and adaptable to future needs.

Date: 24th October 2018 (Wednesday)
Time: 12.00pm – 1.30pm (buffet lunch shall be served upon conclusion of Lecture)
Venue: National University of Singapore
11 Kent Ridge Drive, Singapore 119244
Shaw Foundation Alumni House, Auditorium (Level 2)

Free Admission

Speaker
Prof. Heng Chye Kiang

Prof. Heng Chye Kiang, PPA(P), BBM, PBM, is the Lum Chang Chair Professor and immediate past dean of the School of Design and Environment, National University of Singapore. He teaches architecture, urban design and planning and has lectured at major universities in Europe and Asia. His research covers sustainable urban design, planning, and the history of Chinese cities. He publishes widely; his books include Singapore Chronicles: Urban Planning (2018), 50 Years of Urban Planning in Singapore (2016), Re-Framing Urban Space (2015), On Asian Streets and Public Space (2010), A Digital Reconstruction of Tang Chang'an (2006), and Cities of Aristocrats and Bureaucrats (1999).

Prof Heng consults internationally on urban design and planning and is the conceptual designer of several international urban design competition-winning entries in China. He also serves as editorial board member of several international journals and as jury member of many international design competitions in Asia. He was on the boards of URA, BCA, JTC and NMS and is currently senior fellow at the URA Academy and Centre for Liveable Cities and a Board member of the Housing & Development Board, the Singapore Institute of Technology and NAFA.

Note: The National University of Singapore (NUS) has appointed authorised personnel (who will be carrying identification issued by NUS) to take photographs and videos for and on behalf of NUS and its supporting organization(s) during the NUS Real Estate Public Lecture Series 2018 (the “Event”). NUS may use photographs and videos taken by such authorised personnel for NUS’ and its supporting organizations’ marketing/publicity purposes in print, electronic and social media. NUS shall not be responsible for photographs and/or videos taken by unauthorised persons during the Event.